The Verge 2017 tech report card: Apps

The biggest story about apps in 2017 was, well, stories. Snapchat still deserves the credit for coming up with the concept, and Instagram shamelessly ripped it off back in 2016, but this year, everyone got on board. WhatsApp added stories (and then later made them less prominent after users complained). Facebook added stories (and tried to guilt users into using them with digital ghosts of friends.) Medium — a largely text based app — added stories! YouTube added stories! It’s stories all the way down as far as the eye can see.

Of course, there’s a very good reason for all this — stories are popular, and popular places on the internet are ripe for that sweet advertising money.

Aside from stories, though, the past year saw Instagram’s…

Continue reading…

The Verge – All Posts

Dark Future: Here’s When We’ll Have the Black Mirror Tech That Lets us Share Physical Sensations

This article is part of a series about season four of Black Mirror, in which Futurism considers the technology pivotal to each episode and evaluates how close we are to having it. Please note that this article contains mild spoilers. Season four of Black Mirror is now available on Netflix.

A Twisted Museum

Miles and miles of desert and open highway  — and then, a small roadside museum, one of those things people pull over and visit to stretch their legs but rarely seek out on purpose. It looks uninhabited; its windows are barred with rusty metal, making it a dark blemish on the peaceful, dusty continuity of the desert.

Sometimes, things look exactly as they should…because what’s inside Rolo Hayne’s Black Museum is just as twisted and dark as its exterior suggests.

Image Credit: Netflix

“There’s a sad, sick story behind almost everything in here,” whispers Rolo Haynes, owner and proprietor, to the museum’s sole visitor. Haynes has collected criminological artifacts, each of which tells its own story of hope, pain, and horror. But unlike a collection of medieval torture instruments in the basement of a history museum (and in true Black Mirror fashion) each artifact was once a gleaming specimen of cutting-edge neurotechnology.

Rolo describes each artifact to the visitor in flashbacks. The first is a web of glowing diodes, draped over a mannequin head — the first piece of Rolo’s collection that foreshadows how “the main attraction came to be” (you’ll have to watch the show to see what that is exactly).

One of the most disturbing sequences hinges on headgear-like tech. In its former utility, the cap-like device, we learn, would gather information about the physical sensations of its wearer non-invasively. The information from the transceiver would then be sent wirelessly to a neural implant that was once installed in the base of a doctor’s skull, right behind their left ear. By slipping headgear gear onto a patient, the doctor could feel the physical sensations of the wearer.

The doctor could feel and experience the exact physical sensations of their patient, figure out whether or not they could say what was wrong, and often deliver a near-perfect diagnosis. The doctors wouldn’t experience any physical damage, no matter how severe the discomfort or pain, but the frequent sensations of pain have some, well, unforeseen consequences.

But how long will it be until we have to seriously contend with this technology and the potential consequences that it brings with it?

Picking Up Signals

A device that can transmit one person’s physical sensations to another is not as impossible as it sounds, though the technology has a long way to go to until it’s able to do so perfectly. The entire process can be split into three steps: (a) recording signals from the brain, (b) decoding them and translating them into a language that the receiver brain can understand, and (c) simulating the sensation in the receiver brain.

Let’s start with the first step: recording signals from the brain. Electrodes or fiber-optics can record information such as pain signals from the sender brain. And the hardware required to link a human brain to a computer has become smaller over time, making the prospect of implanting a device or antenna a very real possibility. But any of these devices, no matter how small, would need to be surgically placed in the brain, and such an invasive procedure involving the brain is still risky and imperfect.

The surgery itself is risky, but also the recipient’s body could reject the implant, or it could deteriorate or malfunction over time.

However, there’s a non-invasive way to do the same thing, in which a device reads brain signals from the surface of the skin. “If you go the non-invasive route, you have the luxury of recording from multiple sites, sometimes the entire brain, without any surgery. However, you lose precision,” says Andrea Stocco, an assistant professor at the Department of Psychology and Institute for Learning and Brain Sciences at the University of Washington in Seattle. That is, because the receiver is so far from where the signals are coming from in the brain, devices often can’t pinpoint their origin closer than a general area.

The method most often used to do that today is called an electroencephalogram (EEG). It measures electrical signals in the brain, and its headset looks similar to Haynes’ transceiver in the show. EEGs can help doctors diagnose and treat brain disorders in which a lot of signals are going haywire, such as epilepsy, but they’re not precise enough to do much more than that. “EEG headsets can be made portable and cheap, but they have terrible problems in isolating signals, since they tend to pick up signals from all over the brain,” Stocco says.

Image Credit: Netflix/YouTube

Sending Simplistic Signals

Steps two and three in the process — replicating these signals into patterns of neural activity that the receiver can understand — are perhaps the most difficult. Of course, without a perfect reading, translating and transmitting signals becomes much more difficult. Robert Gaunt, assistant professor of physical medicine and rehabilitation at the University of Pittsburgh, has taken on this challenge. But instead of relaying physical sensation from brain to brain, he has helped rehabilitate sensation in those lacking it — a device he’s working on allowed an amputee to feel touch again via a robotic arm.

Using electrical stimulation in the brain, “we can create perceptions that people would describe as being cutaneous, or touch, in nature at specific locations on the body,” Gaunt tells Futurism, no matter whether that part of the body is physically present or connected to the brain.

But your sense of touch is surprisingly complex, and simulating sensation in those who can no longer feel is still early in its development. So far, the technology can’t make many distinctions between those “cutaneous” perceptions — say, the temperature and pressure of holding an ice pack to the skin. And some sensations are more difficult to conjure than others, just because of the region of the brain that controls them. “It’s easier to create sensations of touch, pressure, vibration, or a tingle than it is with pain. And that has got to do with some detailed physiological reasons about the sizes of axons and nerve cells themselves,” Gaunt says.

Image credit: Netflix

Touch-based sensations are multimodal  a variety of sensors (nerves) in our hands send small snippets of different information to the brain, which synthesizes the entire sensation. To recreate that perfectly in a lab, scientists would have to manipulate each in the exact combination, and relay them at the right speed. In short, it would be a huge challenge.

Furthermore, no two brains are the same. “Neural codes differ from individual to individual. Although there is a fair degree of similarity, especially at the level of brain architecture, there are also many differences between individual brains,” Stocco says. So even if we could perfectly replicate all of these signals, “it is not possible to simply ‘copy’ a pattern of activity from one brain to another; you would need to adapt and ‘translate’ it,” Stocco says.

Translating these brain signals is still very complex. Neurons in the brain all act a little differently, and scientists are just starting to get a sense of how to manipulate the communication system between them. “Every time you stimulate a neuron, you create a complex cascade of effects in a dynamic system. That means that, even if you fire your probe at 50Hz [for example], the cells nearby might not be responding at the same frequency.”

So we’re still a ways from being able to stimulate the brain all that precisely.

Feeling The Future

So let’s get to it then: how far are we, exactly, from being able to read sensations, decode them, and successfully transmit them to a receiver brain? Without having to resort to highly invasive neural stimulation or applying electricity to the skin, Stocco believes the future lies in minimally invasive technologies. To record signals, “you could slip a network of tiny cortical sensors just underneath the skull, and have it reside permanently” — sort of the way the cap works in Black Mirror, except it would be placed directly on the brain. 

To stimulate the brain, Stocco is betting on ultrasound. You’ve probably heard of ultrasound— it’s been used in medicine since World War 2 to do things like take images of fetuses or opening the blood-brain barrier to deliver drugs. In 2014, researchers at Virginia Tech attempted to modulate neurons firing in the brain using a focused beam of ultrasound waves sent through the skull. The non-invasive experiment was not able make participants feel something that wasn’t there, but the ultrasound helped them better distinguish between two stimuli.

It’s not quite Black Mirror technology, but it’s an interesting finding that could warrant further study.

Even though the technology overall has a ways to go, it’s changing fast. And Stocco is optimistic that we could send physical sensations from one brain to the other pretty soon. “In twenty years, we have moved from crude pilots to having working limb prosthetics and cochlear implants, and as of now even a working memory prosthetic. My bet is that something close to a full neural interface that would let us feel what others feel could be reached by the end of 2038,” Stocco says.

The post Dark Future: Here’s When We’ll Have the Black Mirror Tech That Lets us Share Physical Sensations appeared first on Futurism.

Futurism

The Verge 2017 tech report card: Streaming music

If 2016 was the year that streaming music became a necessity, 2017 is the year streaming music showed its clout. This couldn’t have been showcased any more clearly than at the Grammys, where Chance the Rapper won best new artist, best rap album, and best rap performance — an honor only made possible because nomination rules changed, allowing for streaming-only albums to be eligible for nomination. In his acceptance speech, Chance gave a shout out to SoundCloud.

Streaming music consumption continues to ramp up, not slow down. Mid-way through the year, the RIAA (the Recording Industry Association of America) released statistics on the US music industry, and during the first half of 2017, revenues from streaming services accounted for 62…

Continue reading…

The Verge – All Posts

The Verge 2017 tech report card: Virtual reality

I wouldn’t blame you for tuning out VR news in 2017. There was no string of huge hardware releases, like last year’s Oculus Rift, HTC Vive, and PlayStation VR. The medium’s limits became clearer. For some people, VR reached a trough of irrelevance — stories about it were no longer conceptually fresh and fascinating, but they weren’t relevant to daily life yet, either.

Despite this, 2017 laid exciting groundwork for VR’s future. The biggest advance was arguably Windows Mixed Reality: a VR platform built into Microsoft’s Windows 10 Fall Creators Update, supporting headsets that don’t need external cameras or markers. Mixed Reality headsets and motion controllers still aren’t very comfortable or stylish. But their tracking feels remarkably…

Continue reading…

The Verge – All Posts

The Verge 2017 tech report card: Artificial intelligence and robotics

Artificial intelligence boomed this year like few other areas in tech, but despite the scientific breakthroughs, glut of funding, and new products rolling out to consumers, the field has problems that can’t be ignored. Some of these, like company-driven hype and sensationalist headlines, need better communication from the media and experts. Others challenges are more nuanced and will take longer to address, such as bias in algorithms and the growing threat of tech firms becoming AI monopolies as they hoover up data and talent.

But first, the good stuff. Artificial intelligence was everywhere in 2017, and although you’re right to be skeptical when you hear this, it’s positive news. Experts compare AI to electricity because it’s a…

Continue reading…

The Verge – All Posts

The Verge 2017 tech report card: Gadgets

It’s been a pretty good year for gadgets. While the most popular gadget may have been the fidget spinner, there have been a number of devices released in 2017 that will make a lasting impact for years to come. From the Nintendo Switch, which turned out to be a major hit for the Japanese gaming company, to new smart home devices from companies like Nest and Arlo, to changes in policy around smart luggage that threaten industry leaders in the space, 2017 has been nothing if not exciting for gadget enthusiasts.

The biggest gadget win of the year is undoubtedly the Nintendo Switch. The portable gaming console landed in March and immediately made its mark as the best portable console in years. There have been very few gadgets that have…

Continue reading…

The Verge – All Posts

Sonos markdowns and huge audio discounts highlight New Year’s tech sales

The end of the year is a few days away, and retailers are ringing in 2018 by offering discounts on some of the essentials for your New Year’s party. You can play “Auld Lang Syne” on a new Sonos Play: One speaker, which is on sale for less than its Black Friday price at Amazon. If you snag a Google Home Mini from Walmart for just $ 29, you can use the free $ 25 Walmart credit to order some champagne for your guests. If you want to watch the ball drop, why not do it on a 55-inch 4K TV on sale for $ 399 from Walmart. No matter how you shop New Year’s tech deals, end the year with a smart buy.

AUDIO

Continue reading…

The Verge – All Posts

Blunders and blockbusters from the biggest names in tech

In many ways, the world in 2016 was defined by its mistakes. Companies let products languish, and when they did release updates, they often made questionable design choices. And of course, one of Samsung's most important phones literally went up in s…
Engadget RSS Feed

The Verge 2017 tech report card: Tesla

It was supposed to be Tesla’s year for delivering big on Elon Musk’s ambitious vision: the mainstream electric car known as the Model 3. And at the beginning of 2017, things looked great from the outside. But instead of delivering, 2017 was a year where Tesla stalled on that promise, and in the end was forced to buy itself more time with the strength of its brand and the promises of its CEO.

Tesla entered the year with around half a million preorders for the Model 3, each worth $ 1,000. Musk had promised in 2016 that the car would be at “production capability” by July 1st of this year — a date he called “impossible” to meet. In the end, Musk missed by a week. He tweeted a photo of the first Model 3 to come off the company’s production…

Continue reading…

The Verge – All Posts