ITER Nuclear Reactor May Be The “Holy Grail” of Limitless Renewable Energy

Not Just More Stable

Overcoming a series of setbacks, an international project to build what could be a revolutionary nuclear fusion reactor, which will produce renewable energy, has reached a major milestone. Half of the infrastructure required for the International Thermonuclear Experimental Reactor (ITER) project has now been completed — seven years after construction officially began in 2010.

More than just becoming a major achievement in modern engineering, the ITER project could be a source of clean nuclear fusion energy by 2025. And it all starts on the 180-hectare site in Saint Paul-lez-Durance in southern France.

“[This] fusion reactor work in France may take two to three years to complete, [and then] another three to four years to bring repeatable results,” Thomas Koshy, chair of the IEEE PES Nuclear Power Engineering Committee and former manager of the International Atomic Energy Agency, told Futurism.

Nuclear fusion works in a manner that’s essentially the opposite of its nuclear fission cousin. A fusion reaction occurs when two light nuclei (usually hydrogen isotopes) produce energy. To harness this energy, however, nuclear reactors have to control extreme pressure and temperatures from the super-hot plasma that sustains the fusion reaction.

Stabilizing this reaction for extended periods is what those working on nuclear fusion have been trying to achieve. To facilitate things, an international effort for joint fusion research was begun in 1985. The ITER project, which began in 2007, has 35 nations working in a 35-year long collaboration to build and operate the ITER experimental device.

“The ITER device will be a tokamak, which uses donut-shaped, strong magnetic fields to produce and contain an extremely hot plasma in which the fusion occurs,” Hitachi America Professor of Engineering Dennis Whyte, head of MIT’s Nuclear Science and Engineering (NSE) department and director of its Plasma Science and Fusion Center (PSFC), explained to Futurism. “Tokamaks have for decades demonstrated stable operation. The key difference with ITER is that it’s designed to produce more energy from fusion than the energy necessary to keep it hot.”

The amount of fusion energy a tokamak reactor produces depends on the number of fusion reactions occurring at its core. ITER’s tokamak would have 830 cubic meters of plasma volume, making it ten times larger than currently available fusion reactors. Best of all, the ITER tokamak has been designed to “produce 500 MW of fusion power (Q≥10) from 50 MW of heating input power.” More fusion energy with lesser energy for sustaining temperature, as Whyte said.

“From the scientific point of view, net energy is also an important threshold because the plasma primarily keeps itself hot via the energy released in the fusion reactions,” Whyte explained. “So it becomes self-heating, and therefore has a higher level of self-organization.”

Investing in Clean and Renewable Energy

With more and more nations and even corporations moving towards renewable energy, it’s not surprising that scientists are keen on getting nuclear fusion closer to commercialization. That would take, according to Koshy, a couple of decades more. “Assuming all goes well, we could go commercial in another 20 years,” he told Futurism.

Technological Fixes for Climate Change
Click to View Full Infographic

Dubbed as the “holy grail” of clean and renewable energy, nuclear fusion could indeed disrupt an entire industry. Whyte said that this is, in fact, the reason why we pursue nuclear fusion. He added that:

Economically competitive fusion would play a disruptive role in energy, particularly as we strive to deeply decarbonize the industry. It has features which make it highly complimentary to renewables for electricity: on-demand power, load following, insensitive to local weather […], while at the same time it can scale to meet the entire demand for energy because it uses effectively limitless and widely available fuels.

Despite the apparent benefits nuclear fusion would bring, it’s not without critics. Some doubt the possibility of effectively harnessing nuclear energy and making it commercially viable. Others look at the word “nuclear” and immediately associate it with destructive use. Then there are also critics “who tell us we must have deep decarbonization of the energy sector by mid-century,” Whyte said.

“Right now, fission plays by far the dominant role in supplying carbon-free energy (I’m excluding hydro). Many energy experts get caught up in food-fights about the relative size of renewables versus hydro versus nuclear 20 years from now,” he explained.

“Doing the decarbonization in three decades means choosing only a single path; [that] is too risky. [W]e must have, in my opinion, as diverse a set of options as possible. Fission should be one of those. So should fusion — which is so different from fission in its deployment that it should be considered separately,” Whyte added. “We just need to get fusion soon!”

The post ITER Nuclear Reactor May Be The “Holy Grail” of Limitless Renewable Energy appeared first on Futurism.

Futurism

The UK Government Just Gave a Massive Boost to the World’s Largest Fusion Reactor

Fusion Reactor

At the Culham Science Centre in Oxfordshire, two “centers of excellence” will be built. Created for the UK Atomic Energy Authority’s (UKAEA) fusion research programme at the Science Centre, many hope that this £86m government investment will help to develop fusion reactor technology for the first nuclear fusion power plants. Set to open in 2020, the centers are expected to create approximately 100 jobs and drastically push forward nuclear fusion research.

Each center will do separate things. In one, researchers will explore how to process and store tritium, which is a potential fuel source for commercial fusion reactors. In the other center, researchers will test components of prototypes under fusion reaction conditions.

While a larger magnetic fusion reactor device is currently being built in France, the world’s current largest fusion reactor resides at the Culham Science Centre. But, while these are separate efforts, they are part of a much larger initiative, known as ITER, to elevate the potential of nuclear fusion and make it a realistically viable power source.

The UKAEA hopes that these new centers will garner contracts and further support from ITER and other efforts around the globe. If the efforts at these locations are successful, they could be combined with other projects to create a tangible plan of actualizing a commercial of fusion reactor.

Commercial Energy from Fusion Reactor

Fusion power has been discussed as a clean, green alternative to fossil fuels for many years. It has the potential to create a virtually infinite energy supply and creates no emissions or greenhouse gases. And, as opposed to traditional nuclear energy, there is little-to-no nuclear waste created from energy production. But, while all of these aspects make it seem like a wonder energy source that could cure all modern energy woes and help us to fight climate change, it simply doesn’t exist yet — at least not on a commercial scale.

Fusion Energy: A Practical Guide [Infographic]
Click to View Full Infographic

In order to scale up this energy creation in a way that could be used realistically in a commercial sense, the reactions that take place in nuclear fusion would have to be stabilized. Many expect no viable form of fusion energy to be available until at least 2050 and even when it is a stable process, able to be scaled up, it is extremely expensive. Now, yes the energy itself would be cost-effective as once energy production began the energy itself would be relatively inexpensive. But, as these centers have shown, building a commercial power plant takes millions of dollars in research and then the power plant itself would be enormously expensive to build.

However, while there are apparent and major stumbling blocks between today and a future in which fusion energy is commercially viable, efforts like these prove that it remains within the realm of possibility. Existing commercial, renewable energy sources are providing people around the world with the ability to break free from fossil fuels. But fusion energy could take this one major step further and potentially allow human beings to continue life on this planet for as long as the species wishes.

The post The UK Government Just Gave a Massive Boost to the World’s Largest Fusion Reactor appeared first on Futurism.

Futurism

‘Safer’ thorium reactor trials could salvage nuclear power

A Dutch nuclear research institute is conducting the first experiment in close to five decades on molten-salt nuclear reactors based on thorium. Long hailed as a potential "safer" nuclear power, thorium reactor research could provide clean, affordabl…
Engadget RSS Feed

NASA to Test Nuclear Reactor Designed to Power Future Mars Colony

Nuclear NASA

Being able to produce power on alien worlds will define our terraforming and interplanetary colonization experiences — how we generate atmospheres, produce life’s prerequisites, and power machines for exploration depend on it. NASA experts estimate that a Mars expedition would require roughly 40 kilowatts of power — around enough to power eight houses on Earth — and they think they may know the best way to generate that energy: nuclear fission.

Living Off The Land: A Guide To Settling Mars [Infographic]
Click to View Full Infographic

For the past three years, NASA has been funding Kilopower, a project that aims to develop “a compact, low cost, scalable fission power system for science and exploration.”

The project’s budget is around $ 15 million, and in September, the agency will unveil the fruits of their labor — a 1.9 meters (6.5 feet) tall generator designed to produce up to 1 kilowatt of electric power — during testing at the Nevada National Security Site.

Although other alternatives for generating power have been put forward, none are as viable as fission. Solar energy, for instance, would require that astronauts stick to regions that receive an adequate amount of sunlight. “If you want to land anywhere, surface fission power is a key strategy for that,” Michelle Rucker, an engineer at NASA’s Johnson Space Center, told Space.com.

Project Kilopower marks something of a fission resurgence for NASA after a hiatus of more than 50 years. The last time the agency operated a fission reactor was in 1965, when they launched the Systems for Nuclear Auxiliary Power (SNAP) project. That project resulted in radioisotope thermoelectric generators (RTGs) that are still used to power spacecraft today, as well as the nuclear-powered spacecraft SNAP 10A, which stopped working 43 days after it was launched into space due to an electrical component failure.

A Question of Terraforming

Individuals such as Stephen Hawking have issued warnings that Earth can’t survive our habitation for much longer, so finding an alternative home for humanity is becoming critical. The question of how to provide power off-world is one of the biggest ones we face as we consider the Red Planet as our future home.

Other aspects of Mars colonization are already falling into place. Elon Musk’s SpaceX is driving the transportation element of the cosmic migration forward, developing detailed plans and working on ever-larger spaceships that we could use to get to our planetary neighbor.

Several solutions have been proposed to help us generate a habitable atmosphere. The Defense Advanced Research Projects Agency (DARPA) is considering using bacteria that would form algae to warm and thicken the atmosphere, while NASA detailed at the Planetary Science Vision 2050 Workshop earlier this year how they could build an Earth-like magnetic field around the planet.

If we ever successfully move to another planet, these questions and hundreds more, such as how diseases will respond to space and how reproduction will work, will have to be answered. Estimates concerning how long this will take vary, with some saying decades and others saying centuries. At any rate, let us hope it is sooner rather than later if Hawking’s prediction proves to be accurate.

The post NASA to Test Nuclear Reactor Designed to Power Future Mars Colony appeared first on Futurism.

Futurism