Tapad Partners with Flashtalking to Create ‘Impactful Attribution Modeling Strategy’

How Complete Beginners are using an ‘Untapped’ Google Network to create Passive Income ON DEMAND

Tapad, a company reinventing personalization for the modern marketer, announced this week the “impactful results” of its strategic partnership with Flashtalking, the leading global independent platform for ad delivery, unification and insights.

From the official announcement:

Flashtalking is one of Tapad’s most engaged partners, using the Tapad Graph to unify cross-device engagement and identity-driven consumer behaviors for attribution modeling. The company leverages a unique identifier that, in conjunction with Tapad’s Graph, provides robust multi-touch attribution solution for its clients.

This partnership has resulted in above-industry match and bridge rates for Flashtalking and its customers. Overall, the Tapad Graph yielded a 71 percent match rate with 41 percent of converters engaging on multiple devices, highlighting the importance of cross-device measurement.

Tapad’s identity solutions provide Flashtalking with a more holistic view of global engagement. Flashtalking marries ad server log file data with the Tapad Graph to connect all interactions in the consumer journey. This enables Flashtalking to provide more accurate and impactful cross-device attribution, which ultimately enables better optimization. These achievements have led to recognition of Tapad and Flashtalking’s work by the I-COM Global Forum for Marketing, Data and Measurement.

“Tapad allows us to understand user engagement across devices and platforms at both the household or individual user level, which is extremely beneficial when providing marketers with true path to conversion and attribution,” said Steve Latham, global head of analytics at Flashtalking. “Since our relationship began, we’ve successfully leveraged Tapad data to provide more accurate, actionable insights that have helped numerous brands achieve substantial gains in media effectiveness.”

To learn more about Tapad’s identity services, click here.

The post Tapad Partners with Flashtalking to Create ‘Impactful Attribution Modeling Strategy’ appeared first on Mobile Marketing Watch.

Mobile Marketing Watch

Cash For Apps: Make money with android app

Perfect attribution modeling and how to attain this marketing nirvana

Technology has forever changed the retail shopping experience. Consumers inhabit a digital omni-channel age where people are using their smartphones, tablets and laptops to research, compare and make purchase decisions. A lot of startups and companies are investing in paid media advertising, (Adwords, display, social ads, SEO, email, etc.) to increase downloads, signups, sales, leads and customer acquisitions. But a large part of quantifying the return on marketing is knowing which campaigns are the most effective—not only does this inform you where you should focus your resources to acquire new customers, but also this allows you to reasonably plan and…

This story continues at The Next Web
The Next Web

IBM is Modeling New AI After the Human Brain

Attentive Robots

Currently, artificial intelligence (AI) technologies are able to exhibit seemingly-human traits. Some are intentionally humanoid, and others perform tasks that we normally associate strictly with humanity — songwriting, teaching, and visual art.

But as the field progresses, companies and developers are re-thinking the basis of artificial intelligence by examining our own intelligence and how we might effectively mimic it using machinery and software. IBM is one such company, as they have embarked on the ambitious quest to teach AI to act more like the human brain.

The Top 10 Humanoid Robots in Existence Today
Click to View Full Infographic

Many existing machine learning systems are built around the need to draw from sets of data. Whether they are problem-solving to win a game of Go or identifying skin cancer from images, this often remains true. This basis is, however, limited — and it differentiates from the human brain.

We as humans learn incrementally. Simply put, we learn as we go. While we acquire knowledge to pull from as we go along, our brains adapt and absorb information differently from the way that many existing artificial systems are built. Additionally, we are logical. We use reasoning skills and logic to problem solve, something that these systems aren’t yet terrific at accomplishing.

IBM is looking to change this. A research team at DeepMind has created a synthetic neural network that reportedly uses rational reasoning to complete tasks.

Rational Machinery

By giving the AI multiple objects and a specific task, “We are explicitly forcing the network to discover the relationships that exist,” says Timothy Lillicrap, a computer scientist at DeepMind in an interview with Science Magazine. In a test of the network back in June, it was questioned about an image with multiple objects. The network was asked, for example: “There is an object in front of the blue thing; does it have the same shape as the tiny cyan thing that is to the right of the gray metal ball?”

In this test, the network correctly identified the object a staggering 96 percent of the time, compared to the measly 42 to 77 percent that more traditional machine learning models achieved. The advanced network was also apt at word problems and continues to be developed and improved upon. In addition to reasoning skills, researchers are advancing the network’s ability to pay attention and even make and store memories.

Image Credit: ColiN00B / Pixabay
Image Credit: ColiN00B / Pixabay

The future of AI development could be hastened and greatly expanded by using such tactics, according to Irina Rish, an IBM research staff member, in an interview with Engadget, “Neural network learning is typically engineered and it’s a lot of work to actually come up with a specific architecture that works best. It’s pretty much a trial and error approach … It would be good if those networks could build themselves.”

It might be scary to think of AI networks building and improving themselves, but if monitored, initiated, and controlled correctly, this could allow the field to expand beyond current limitations. Despite the brimming fears of a robot takeover, the advancement of AI technologies could save lives in the medical field, allow humans to get to Mars, and so much more. 

The post IBM is Modeling New AI After the Human Brain appeared first on Futurism.


Internet of Things (IoT) in 5G Mobile Technologies (Modeling and Optimization in Science and Technologies)

Internet of Things (IoT) in 5G Mobile Technologies (Modeling and Optimization in Science and Technologies)

Internet of Things (IoT) in 5G Mobile Technologies (Modeling and Optimization in Science and Technologies)

This book reports on the latest advances in the modeling, analysis and efficient management of information in Internet of Things (IoT) applications in the context of 5G access technologies. It presents cutting-edge applications made possible by the implementation of femtocell networks and millimeter wave communications solutions, examining them from the perspective of the universally and constantly connected IoT. Moreover, it describes novel architectural approaches to the IoT and presents the new framework possibilities offered by 5G mobile networks, including middleware requirements, node-centrality and the location of extensive functionalities at the edge. By providing researchers and professionals with a timely snapshot of emerging mobile communication systems, and highlighting the main pitfalls and potential solutions, the book fills an important gap in the literature and will foster the further developments of 5G hosting IoT devices.

List Price: $ 179.00