Japan’s latest supercomputer is dedicated to nuclear fusion

How Complete Beginners are using an ‘Untapped’ Google Network to create Passive Income ON DEMAND

This year, Japan will deploy a Cray XC50 that will be the world's most powerful supercomputer in the field of advanced nuclear fusion research. It will be installed at the National Institutes for Quantum and Radiological Science (QST) and used for lo…
Engadget RSS Feed
Cash For Apps: Make money with android app

MIT Is Taking on Fusion Power. Could This Be the Time It Actually Works?

How Complete Beginners are using an ‘Untapped’ Google Network to create Passive Income ON DEMAND

We may be one large step closer to a future driven by fusion power — the elusive, limitless, and zero-carbon energy source that’s even a step-up from renewables. A collaboration between MIT and a new private company, Commonwealth Fusion Systems (CFS), aims to bring the world’s first fusion power plant online in the next 15 years, using a novel approach.

Fusion powers the sun and other stars. It involves lighter atoms like hydrogen smashing together to form heavier elements, like helium, and releasing massive amounts of energy while doing so. This energy release happens, however, at very, very extreme temperatures — in the range of hundreds of millions of degrees Celsius — which would melt any material it came in contact with.

So, in order to experiment with fusion in the laboratory, researchers use magnetic fields to hold that smashed together soup of subatomic particles, called plasma, suspended and away from the walls of the experimental chamber. The trickiness of using fusion as a form of energy is that, to date, every experiment has yielded net negative energy  — meaning more energy goes into heating that subatomic soup than comes out for potential use.

Now, this collaboration is launching an experiment known as SPARC, which will use new, high-temperature superconductors to build smaller, more powerful high-field magnets to power an experimental fusion reactor. SPARC’s goal? The first-ever net positive energy gain from fusion.

Vizualization of proposed SPARC experiment. Image Credit: Visualization by Ken Filar, PSFC research affiliate
Visualization of the proposed SPARC experiment. Image Credit: Visualization by Ken Filar, PSFC research affiliate.

This fusion experiment is designed to produce 100 megawatts of heat, thanks to those new magnets. It won’t turn that heat into electricity, but in 10-second pulses, it could produce twice the power needed to heat the plasma, and as much power as is used by a small city.

“This is an important historical moment: Advances in superconducting magnets have put fusion energy potentially within reach, offering the prospect of a safe, carbon-free energy future,” MIT President L. Rafael Reif told MIT News. 

While this team’s approach to fusion power seems promising; a number of previous collaborations were unable to get fusion energy off the ground. Researchers at the University of New South Wales tried, and failed, to create fusion through hydrogen-boron reactions.

The International Thermonuclear Experimental Reactor (ITER) in France is also making progress, but SPARC is set to dethrone the project in terms of size. SPARC will be only 1/65th of ITER’s volume, because these new high-field magnets make it possible to build smaller fusion plants needed to achieve a given level of power.

If SPARC is successful, and the fusion project design proliferates worldwide, it’s possible fusion energy could start to help meet global energy demands. Researching carbon-free fusion energy is critical during an era in which greenhouse gases continue to drive climate change.

“The aspiration is to have a working power plant in time to combat climate change,” Bob Mumgaard, CEO of Commonwealth Fusion Systems, told The Guardian. “We think we have the science, speed and scale to put carbon-free fusion power on the grid in 15 years.”

The post MIT Is Taking on Fusion Power. Could This Be the Time It Actually Works? appeared first on Futurism.


Cash For Apps: Make money with android app

MIT embarks on ambitious plan to build nuclear fusion plant by 2033

How Complete Beginners are using an ‘Untapped’ Google Network to create Passive Income ON DEMAND

MIT announced yesterday that it and Commonwealth Fusion Systems — an MIT spinoff — are working on a project that aims to make harvesting energy from nuclear fusion a reality within the next 15 years. The ultimate goal is to develop a 200-megawatt p…
Engadget RSS Feed
Cash For Apps: Make money with android app

Sonnet ships 1 terabyte version of the Fusion Thunderbolt 3 PCIe Flash Drive

Article Image

Thunderbolt 3 GPU enclosure vendor Sonnet has started shipping another Mac-related accessory, by offering a version of its Fusion Thunderbolt 3 PCIe Flash Drive that includes 1 terabyte of storage to users requiring a portable high-speed solid state external drive.
AppleInsider – Frontpage News

GoPro’s Fusion camera is ready to work with a few Android phones

GoPro's ability to nail the experience with its 360-degree Fusion camera will rely on its marriage of hardware and software capabilities, and now the latter is getting a boost. An update to the company's Android app allows certain phones (listed belo…
Engadget RSS Feed

The Long Wait for Fusion Power May Be Coming to an End

Renewable energy sources like solar and wind account for a growing share of the world’s electric power. That’s no surprise, given concerns about the carbon emissions from fossil fuel-fired power plants and their harmful effect on the climate.

Nuclear energy offers some advantages over renewables, including the ability to make electricity when the sun doesn’t shine and the wind doesn’t blow. But today’s nuclear plants use fission, which splits atoms of rare metals like uranium. Fission creates radioactive waste and can be hard to control — as evidenced by reactor accidents like those at Three Mile Island, Chernobyl, and Fukushima.

Another form of nuclear energy known as fusion, which joins atoms of cheap and abundant hydrogen, can produce essentially limitless supplies of power without creating lots of radioactive waste.

Fusion has powered the sun for billions of years. Yet despite decades of effort, scientists and engineers have been unable to generate sustained nuclear fusion here on Earth. In fact, it’s long been joked that fusion is 50 years away, and will always be.

But now it looks as if the long wait for commercial fusion power may be coming to an end — and sooner than in half a century.

Leading the Charge

One of the brightest hopes for controlled nuclear fusion, the giant ITER reactor at Cadarache in southeastern France, is now on track to achieve nuclear fusion operation in the mid- to late-2040s, says Dr. William Madia, a former director of Oak Ridge National Laboratory who led an independent review of the ITER project in 2013.

Construction of the ITER reactor — a doughnut-shaped vacuum chamber known as a “tokamak” that spans more than 60 feet — recently passed the halfway point.

Madia says the decades needed to bring the ITER reactor to full operation reflect the huge engineering challenges still facing fusion researchers. These include building reactor walls that can withstand the intense heat of the fusion reaction — about 150 million degrees Celsius (270 million degrees Fahrenheit), or 10 times hotter than the core of the sun.

And then there’s the challenge of creating superconducting materials that can generate the powerful magnetic fields needed to hold the fusion reaction in place.

ITER has international backing and a budget of more than $ 14 billion. But it’s not the only promising effort in the long quest for sustained nuclear fusion, or what some have called a “star in a jar.”

Lots of Competition

Several smaller fusion projects, including commercial reactors being developed by Lockheed Martin in the U.S., General Fusion in Canada, and Tokamak Energy in the U.K., aim to feed fusion-generated power to electricity grids years before ITER produces its first fusion reactions.

“Our target is to deliver commercial power to the grid by 2030,” says Tokamak Energy’s founder, Dr. David Kingham.

Lockheed Martin’s legendary Skunk Works engineering division is developing a compact fusion reactor that uses cylindrical magnetic fields to confine the fusion reaction instead of the donut-shaped reactor being built at the ITER site.

The company foresees its fusion reactors replacing the fission reactors used in warships and submarines — and being put on trucks so they can be deployed wherever power is needed. A 100-megawatt fusion reactor that fits on the back of a truck could generate enough power for 100,000 people, according to the company.

Other fusion power projects include the Wendelstein 7-X fusion reactor in Germany, which uses an alternative to ITER’s tokamak design known as a stellarator. Like ITER, the German reactor is backed by an international consortium and serves mainly for experimental research.

Exactly which, if any, of these initiatives will crack the fusion nut is still uncertain. But experts hope fusion power one day can make fossil-fuel-fired plants and nuclear fission reactors obsolete, along with most of their environmental problems.

And we can take heart that the remaining challenges are all just a matter of advanced engineering. Says Madia, “We know the science is absolutely real because we can see it happening in the sun every day.”

The Long Wait for Fusion Power May Be Coming to an End was originally published by NBC Universal Media, LLC on December 29, 2017 by Tom Metcalfe. Copyright 2017 NBC Universal Media, LLC. All rights reserved.

The post The Long Wait for Fusion Power May Be Coming to an End appeared first on Futurism.


iMac Pro teardown finds mystery Apple chip that could be A10 Fusion coprocessor

Article Image

A careful disassembly of the new iMac Pro has found another Apple-made chip in addition to the new T2, potentially confirming rumors that the desktop would feature an A10 Fusion coprocessor.
AppleInsider – Frontpage News

New Calculations May Finally Make Fusion Energy a Reality

It’s well established that nuclear fusion — the reaction that powers our Sun — could be the key to unlocking clean, limitless energy here on Earth.

But one of the biggest challenges of modern science is how to harness the fusion reaction so that it produces more energy than it consumes. And a new paper claims to have found a way to do just that.

Instead of looking at how to optimize common fusion reactor designs, such as tokamaks or stellerators, a group of physicists experimentally tested some novel reactor types.

They found that a strange-looking sphere design could be the key to achieving net-positive nuclear fusion because, surprisingly, it has the potential to generate more energy than it uses.

The key difference, aside from its shape, is that this nuclear sphere would fuse hydrogen and boron, rather than hydrogen isotopes such as deuterium and tritium. And it uses lasers to heat the core up to 200 times hotter than the center of the Sun.

If the team’s calculations are correct, the hydrogen-boron reactor device could be built and producing net-positive energy way before any of the reactors currently being tested reach completion.

Even better, the hydrogen-boron reaction produces no neutrons, and therefore doesn’t create any radioactive waste as a byproduct.

“It is a most exciting thing to see these reactions confirmed in recent experiments and simulations,” says lead researcher Heinrich Hora, from the University of New South Wales in Australia.

“I think this puts our approach ahead of all other fusion energy technologies.”

Fusion reactions take the opposite approach to the nuclear fission reactions we rely on for our nuclear power today: instead of atoms being split, they’re combined, or fused, together.

It’s similar to the reactions that power the Sun, as lighter nuclei are fused to build heavier ones with the help of incredible temperatures and pressures.

As great as it sounds in theory, it’s proving very difficult to harness in practice. The past two years have been record-breaking for fusion reactors around the world, with Germany switching on their much-hyped Wendelstein 7-X stellerator reactor.

But despite all our advances, we’re not a whole lot closer to creating net-positive nuclear fusion. Put simply, that’s because these machines just take so much energy to generate plasma.

In fact, Wendelstein 7-X isn’t even intended to generate usable amounts of energy, ever. It’s just a proof of concept.

But for years, Hora and her team have been working on alternative designs. And in this study, they tested them out experimentally as well as through simulations.

Their hydrogen-boron reactor works by triggering an “avalanche” fusion reaction from a laser beam packing a quadrillion watts of power in just a trillionth of a second.

You can see what it would look like below.

hb fus 02
Diagram showing a hydrogen-boron reaction. Image Credit: UNSW

The latest tests put the hydrogen-boron approach ahead of other similar technologies, including deuterium-tritium fusion, which is being explored at the National Ignition Facility in the US (and also has the drawback of producing radioactive waste).

The team also put together a roadmap for further development of hydrogen-boron fusion.

The best news? If future research doesn’t reveal any major engineering hurdles to this approach, the scientists reckon that a prototype reactor could be built within a decade.

While plenty of challenges remain in optimizing the necessary reactions and keeping them stable enough to generate electricity, if this new fusion technique can be made to work, the benefits could be huge.

“The fuels and waste are safe, the reactor won’t need a heat exchanger and steam turbine generator, and the lasers we need can be bought off the shelf,” says Warren McKenzie, managing director of HB 11, which owns the patents to the new technology.

The research has been published in Laser and Particle Beams.

The post New Calculations May Finally Make Fusion Energy a Reality appeared first on Futurism.


New Technique Could Allow Scientists to Create Fusion Energy

Fusion Energy

For decades, fusion energy has been an impossible-seeming solution to our energy problems. But creating fusion energy, and doing so without radioactive fuel elements has seemed to many too good to be true, until now. Lead author Heinrich Hora, an emeritus professor of theoretical physics at the University of New South Wales (UNSW) in Sydney and an international team of researchers has developed a laser-based technique that creates fusion without any radioactive waste.

As described in the researchers’ paper, which is published in the scientific journal Laser and Particle Beams, the team found that it is possible to create fusion through hydrogen-boron reactions using two powerful lasers in rapid bursts. These laser bursts apply precise non-linear forces which compresses the nuclei together. This technique is far different from previous attempts in which high-strength magnets were used in a toroidal chamber to heat radioactive fuel to the temperature of the Sun.

According to Hora, who predicted in the 1970’s that fusion might be possible with hydrogen and boron and without the need to reach thermal equilibrium, “I think this puts our approach ahead of all other fusion energy technologies.”

While fusion has not yet been achieved using this technique, international collaborators and experts have weighed in on the study and think that fusion is entirely possible using hydrogen-boron reactions.


One major positive aspect of creating fusion with hydrogen-boron reactions, besides that so far it is theoretically possible, is that it produces no neutrons in its primary reaction. This means that it doesn’t produce any radioactivity.

Fusion energy is often criticized, not only for its potential application as a realistic and viable source of energy, but because of its potential to cause enormous amounts of radioactive waste. Even if everything went according to plan, previous techniques could have amounted in dangerous, excessive, radioactive waste. So even if creating fusion with this technique turns out to be less than an ideal method, it will at least be much safer and less wasteful. Additionally, because of the materials used, this technique could be a lot easier to replicate, Hora explained, “From an engineering perspective, our approach will be a much simpler project because the fuels and waste are safe, the reactor won’t need a heat exchanger and steam turbine generator, and the lasers we need can be bought off the shelf.”

Fusion Energy: A Practical Guide [Infographic]
Click to View Full Infographic

Hora was excited not only about the initial success of this research, but also the potential for this technique to create much more energy than previous methods, “It is a most exciting thing to see these reactions confirmed in recent experiments and simulations. Not just because it proves some of my earlier theoretical work, but they have also measured the laser-initiated chain reaction to create one billion-fold higher energy output than predicted under thermal equilibrium conditions.”

Hora and other researchers still have a long road ahead of them between the publication of this work and the creation of fusion energy. However, as the team moves forward with research it is important to note that this is a positive step forward in terms of our energy future. There doesn’t seem to be a possible future in which fossil fuel is still our primary fuel source. And so continued investment and exploration of alternative energy sources that are renewable and do not cause emissions will pull this movement and other such legitimate efforts to curb climate change.

The post New Technique Could Allow Scientists to Create Fusion Energy appeared first on Futurism.


The UK Government Just Gave a Massive Boost to the World’s Largest Fusion Reactor

Fusion Reactor

At the Culham Science Centre in Oxfordshire, two “centers of excellence” will be built. Created for the UK Atomic Energy Authority’s (UKAEA) fusion research programme at the Science Centre, many hope that this £86m government investment will help to develop fusion reactor technology for the first nuclear fusion power plants. Set to open in 2020, the centers are expected to create approximately 100 jobs and drastically push forward nuclear fusion research.

Each center will do separate things. In one, researchers will explore how to process and store tritium, which is a potential fuel source for commercial fusion reactors. In the other center, researchers will test components of prototypes under fusion reaction conditions.

While a larger magnetic fusion reactor device is currently being built in France, the world’s current largest fusion reactor resides at the Culham Science Centre. But, while these are separate efforts, they are part of a much larger initiative, known as ITER, to elevate the potential of nuclear fusion and make it a realistically viable power source.

The UKAEA hopes that these new centers will garner contracts and further support from ITER and other efforts around the globe. If the efforts at these locations are successful, they could be combined with other projects to create a tangible plan of actualizing a commercial of fusion reactor.

Commercial Energy from Fusion Reactor

Fusion power has been discussed as a clean, green alternative to fossil fuels for many years. It has the potential to create a virtually infinite energy supply and creates no emissions or greenhouse gases. And, as opposed to traditional nuclear energy, there is little-to-no nuclear waste created from energy production. But, while all of these aspects make it seem like a wonder energy source that could cure all modern energy woes and help us to fight climate change, it simply doesn’t exist yet — at least not on a commercial scale.

Fusion Energy: A Practical Guide [Infographic]
Click to View Full Infographic

In order to scale up this energy creation in a way that could be used realistically in a commercial sense, the reactions that take place in nuclear fusion would have to be stabilized. Many expect no viable form of fusion energy to be available until at least 2050 and even when it is a stable process, able to be scaled up, it is extremely expensive. Now, yes the energy itself would be cost-effective as once energy production began the energy itself would be relatively inexpensive. But, as these centers have shown, building a commercial power plant takes millions of dollars in research and then the power plant itself would be enormously expensive to build.

However, while there are apparent and major stumbling blocks between today and a future in which fusion energy is commercially viable, efforts like these prove that it remains within the realm of possibility. Existing commercial, renewable energy sources are providing people around the world with the ability to break free from fossil fuels. But fusion energy could take this one major step further and potentially allow human beings to continue life on this planet for as long as the species wishes.

The post The UK Government Just Gave a Massive Boost to the World’s Largest Fusion Reactor appeared first on Futurism.