How Earth’s Most Extreme Environs Are Key to Humanity’s Future

How Complete Beginners are using an ‘Untapped’ Google Network to create Passive Income ON DEMAND

EVERY YEAR, A SMALL GROUP OF RESEARCHERS embark on the same perilous journey to a remote corner of the Qinghai-Tibet Plateau (QTP) — also known as the “Roof of the World.”

It’s the planet’s largest and highest plateau stretching between Tibet, China, and India. At nearly 5 kilometers (3 miles) above the sea, the plateau’s as tall as the highest of the Rocky Mountains. Up there, the scientists say, the air is the clearest you’ll ever see. At the surface, prehistoric lakes dot a barren landscape shaped by powerful winds, snow, and widely changing temperatures. At the plateau, “there are magnificent and mysterious sceneries that you can’t find anywhere else,” Ticao Zhang, an associate professor of botany at the Chinese Academy of Sciences in Beijing, said in an email to Futurism.

Getting there is about as easy as it sounds (read: not at all). The trip starts from either Kathmandu, Nepal, or Chengdu, China. The journey — a short flight, followed by a long trek — takes about a week. Continuous rock-falls and altitude sickness are just two of the problems explorers who take the trek face without fail.

“During the rainy seasons, cars and people can fall off the cliff into the river, because the ground is so slippery,” Zhang said. “Altitude sickness is another problem that takes the inexperienced explorer by surprise. For years, I suffered from headaches and couldn’t carry my bags because I found it difficult to breathe,” he recalled. Locals pass on a little verse about the highest part of the plateau, known as Ali, which Zhang recalled as the biggest challenge: “Sky-high Ali, a Mystic Land in Western Tibet.”

But still, year after year, the scientists make the trek. They do so to collect samples of the unique plants and microbes that, despite the odds, live and thrive there. With its average annual temperature hovering around -4 degrees C (39.2 degrees F), low levels of oxygen, frozen soil, and strong ultraviolet radiation (UV), the plateau is one of the most extreme environments on Earth.

Climate change is only amplifying these inhospitable conditions. Researchers like Zhang suspect that environments like these could indicate what the world could be like if climate change ravages the planet in line with experts’ most extreme predictions.

As weather gets more extreme, seas rise, temperatures escalate, and dry places get drier, crops that traditionally grow in these places will be more difficult to sustain. Agricultural researchers are already working to engineer crops that can withstand a wider range of environmental conditions to feed a growing human population, and some feel that extremophiles — organisms that thrive under extreme conditions — might hold the key. But first, scientists have to understand how plants have evolved throughout millennia to survive under such harsh conditions.

“Understanding how organisms adapt to extreme environments could make a significant contribution to evolutionary ecology,” said Zhang.

However, little genome-based research has been conducted on plants in this region, the most biodiverse of the world’s extreme environments.

Which is exactly why the trek is made in the first place: These researchers are attempting to fill this gap, which may or may not hold the keys to humanity’s survival.

Image Credit: Creative Commons

Value In the Extreme

LIFE PERSISTS where you might least expect it — under polar ice, inside hot springs, on depleted soils of the Himalayan plateau. And the process enabling bacteria to live in these environments isn’t restricted to microbes. Previous studies have explored how humans and vertebrates also evolve to adapt to environments with little oxygen, powerful sunlight, or cold temperatures. Scientists believe that the distinctive life forms that arise as a result may also, in some cases, be genetically unique.

“Extreme environments are those that we think host the highest additional, unexplored diversity,” Nikos Kyrpides, who leads the Genome Biology Program at the Joint Genome Institute of the U.S. Department of Energy, told Futurism. His program invites scientists from across the world to submit their genetic samples — including soils, plants, and microbes — for sequencing and analysis.

Kyrpides explained that places like the surface of the ocean and the planet’s soils have been studied extensively, and the genomes of many of the creatures found there have been sequenced. “But there are remote environments like, for example, deep marine environments, that have not been really explored a lot, and we’ve seen that most of the unknown come from this particular environment, so we know there is a lot still to discover there.”

What scientists find in these extreme environments can be useful for human industry and food security.

In extreme cold, for example, “you have lots of animals that are used to living at zero degrees or just below, and they could potentially have some very useful functions for society,” Melody Clark, a molecular biologist at the British Antarctic Survey, told Futurism. Scientists could look across a range of species that live in these environments for enzymes that make those species well adapted to low temperatures, potentially useful data for industrial products, so we don’t have to use any additional thermal energy to get things to work, Clark said.

For example, Clark explained, “in the Antarctic animals evolve in isolation, and for them living under 0 degrees C is very normal. There are a number of adaptation strategies, think of the icefish that lives with no hemoglobin in the body.”

Scientists can use enzymes extracted from extremophiles living under 0 degrees C to produce detergents that work at room temperature, or to process foods such as cheese and wine at an industrial scale. Some microorganisms that have evolved to survive in highly polluted environments also decontaminate polluted water, a process that scientists call bioremediation.

Hot regions, on the other hand, are going to expand worldwide, Clark said, “so we need to understand what lives there, how they live there, and how we can potentially exploit that,” by adding their genes to our crops. A variety of plants, such as agave and aloe, currently survive high temperatures and drought conditions, she explained, by losing very little water during respiration. The tiny pores on the leaves, called stomata, are programmed to remain closed during the day and open at night when it’s cooler, so they can collect carbon dioxide without losing much water in the process.

Image Credit: Creative Commons

Another example of extreme adaptation: “resurrection” plants, which completely wither during dry periods and come back to life when water is available, Clark said. “Obviously these do not necessarily make good food crops, but by working out how they survive at extreme temperatures, we can then start to identify if we can either introduce some of these traits into current crop plants or adapt these extremophiles as food sources.”

On the Tibetan Plateau, researchers set out to better understand already-discovered species that might prove to be similarly useful.

After a casual meeting through a mutual acquaintance that led to a decade-long partnership, the team of Chinese and British researchers became obsessed with unlocking the secrets of the toughest terrestrial environment on Earth. Over the years, the researchers have zeroed in on several species of plants and bacteria that have evolved to withstand extreme winds, lack of water, and dramatic changes in temperatures typical of the QTP.

The project has passed from one generation of researchers to another; Yang Zhong, one of the scientists who first worked on the QTP, passed away recently, leaving his discoveries as his legacy. The group described the species’ genomes in a series of papers published in a range of scientific journals, including Nature and Scientific Reports, between 2009 and 2016.

“Our work shows that different species have evolved different mechanisms to adapt to the extreme environment of the Qinghai-Tibet Plateau,” molecular biologist James Crabbe, Supernumerary Fellow at Wolfson College, Oxford University, who took part in several expeditions to the QTP, told Futurism. “For example, the plants we are studying seem to have evolved different cell wall organization and reproduction patterns.”

Cells communicate with one another through a series of chemical signals that control various functions, such as reproduction and the shape of the new cells. Through their work on the Tibetan Plateau, the research team found that the plants and bacteria they were studying contain specific genes that signal cells to produce a stronger outer membrane, making them more able to withstand a harsh environment by reducing water losses. The plants’ genes also caused the organism to produce higher levels of an amino acid that protects key parts of the cell from harmful UV rays.

Crabbe said that identifying genes that help organisms survive in conditions with a lot of carbon dioxide or little water will enable plants to survive under future climate change on the planet. Plants such as the Tibetan variety of the Thale cress, the genome of which the team sequenced in 2016, had thousands of years to adapt to their extreme environment. There is a chance that more parts of the planet will have to contend with similar conditions, but adapt to live with them in less than a century; the genetic codes of these plants could be models from which researchers can engineer future, hardier crops.

A Planet in Flux

THE PRESENT MOMENT is critical for this research, as a growing preponderance of evidence has scientists globally in agreement: the Earth’s climate will become more erratic in coming centuries, turning some regions drier and others wetter.

A recent study in Nature Communications noted that melting polar caps will not only trigger sea level rise, but could also cause other regions such as California to become drier, increasing the risk of desertification and wildfires. And while the 2015 Paris Accord united (almost all) the members of the United Nations in an effort to limit climate change’s damage, models predict that we’re unlikely to meet its ambitious target, leaving fragile ecosystems vulnerable to destruction. The authors of one recent study concluded that, even if the target was reached, we would be left with a significantly drier world.

The Food and Agriculture Organization estimates that by 2050, the world’s population will reach 10 billion, and we’ll need about 50 percent more crops than what we’re producing today. In vulnerable regions such as the Horn of Africa, where drought already hinders food production, this could mean the collapse of entire food systems — and ultimately, the death or displacement of millions of people.

But it’s not only developing countries that are at risk. Globally, food prices will become more volatile, as extreme events such as hurricanes or drought hit different parts of the world, endangering or destroying crops. As more people worldwide make money to buy more meat, we’ll need to produce food for animals as well as ourselves, which will deplete soils and increase the need for fertilizers. Experts have suggested some preventative measures, such as meat or carbon taxes, but they wouldn’t be easy to implement.

“In an evolutionary sense, we don’t have any time to adapt,” Nigel Halford, a crop scientist with the nonprofit Rothamsted Research in the United Kingdom, told Futurism. “Plant breeders will have to think about new varieties of crops for an environment that doesn’t exist yet. So that’s the challenge.”

Image Credit: Creative Commons

Discoveries that explain how plants survive in extreme environments such as the Qinghai-Tibet Plateau, with unique adaptations that evolved over millions of years, could eventually provide insights on how to engineer crops that can withstand similar conditions, Halford said. “What is it about that specific shape or genotype that has changed to enable it to adapt to extreme environments? You can look at how all the genes are active at a particular time, under a particular stress and you can compare this ecotype with something that you are growing now in the U.K.” he said. “What’s different? What’s enabling them to cope with that extreme environment?”

From Tibet to Kitchen Table

WHILE THESE DEVELOPMENTS encourage the researchers in their pursuit of weird life on the Qinghai-Tibet Plateau, there is still a long way to go before what they learn can be integrated into our crops. First, they have to ensure that these genetic changes are actually behind the specific adaptations that make the plants and bacteria successful, not some random mutation or other factor they didn’t take into account. “We have shown that these genes are enhanced in the plants that have survived,” said Crabbe, “but the question is: Are those genes actually involved in the adaptation?” The team is now studying the physiology of the plants and microbes to try and answer the question.

To do so, the scientists will grow the plants under controlled conditions, to understand how the unique genetics and proteins of the plants collected on the QTP translate into the hardiness that guarantees the species’ survival. Plants such as the Tibetan Thale Cress, for example, might flower more quickly in order to preserve energy under extreme conditions, Crabbe explained. That’s what a lot of the initial experiments are showing: different ways that plants find to conserve energy.

“You have to look at how plants survive, and only after that you can think about how to make them more productive under extreme conditions,” Crabbe said.

Crabbe and Zhang aren’t the only ones studying organisms in extreme environments to augment our food supply. While they focus on understanding what keeps plants alive, other researchers are studying ways in which crops can produce more food in less space, all outside the conventional environments where farmers usually grow them. Instead of searching for hardy plants in remote corners of the world, researchers from the University of Illinois are looking at species that we already use for food as the best bet to boost food security fast.

Their project, Soy Free-Air Gas Concentration Enrichment (SoyFACE) helps the researchers evaluate the impact of an altered atmosphere, higher temperature, and limited water on crops such as soybeans and maize. Their goal: to isolate those that perform better under environmental stress. Individual crops — or their genetic traits — that perform well under future environmental conditions could help researchers develop new breeds to feed the world.

Image Credit: SoyFACE

To achieve that, they devised a ring-like structure that surrounds large swathes of crops, exposing them to higher levels of carbon dioxide and ozone. The facility recreates the atmospheric compositions predicted for 2050, when carbon dioxide is expected to reach 600 parts per million (ppm), more than double the levels seen at the start of the Industrial Revolution (around 260 ppm).

The ring releases gases that spread with the wind. Because of its architecture, the ring traps the gases without letting them disperse.

The ability to engineer crops that work under these particular conditions “is definitely something that we need in our toolbox,” Steve Long, a crop scientist at the University of Illinois who is working on the project SoyFACE,told Futurism. “I think there is no one solution to it, and if you look at the urgency of the situation we really need to be pursuing all of it.”

For a growing number of ecosystems, and the unique species perfectly adapted to them, time is running out. Many fear that the organisms living in extreme environments will disappear before we can even discover them, but the researchers on their way to the QTP don’t fret. When the time comes, they embark on the same journey once again, in search of humble plants hiding those special genes, diamonds in the rough.

Research into crop engineering is progressing quickly, but the scientists show their sense of urgency in their persistence, their willingness to expend the energy and resources to make the same trek, year after year, in the hope of pushing their knowledge just a tiny bit further.

“The genetic resources currently at our disposal were obtained from various plants commonly available and already classified,” said Zhang. “But there are many organisms that have yet to be discovered, which carry new genetic resources we could exploit.”

This patient hunt, he believes, will have huge implications for future generations. It could be the hunt for our survival — an answer, of course, that starts somewhere life’s least likely to persist.

The post How Earth’s Most Extreme Environs Are Key to Humanity’s Future appeared first on Futurism.


Cash For Apps: Make money with android app

SanDisk Extreme 400GB world’s fastest UHS-I microSD card announced

How Complete Beginners are using an ‘Untapped’ Google Network to create Passive Income ON DEMAND

Last year at the IFA Western Digital Corporation introduced SanDisk Ultra 400GB microSDXC world’s highest-capacity microSD card. This week at the MWC it has introduced SanDisk Ultra 400GB microSDXC world’s fastest UHS-I microSD card offering 160MB/s  read speed.  It also meets the Application Performance Class 1 (A2) requirements to help launch and load apps faster, compared to A1. Western Digital said that it has achieved this speed by leveraging its proprietary technology. The company said that bigger capacity and faster speed will help users enjoy immersive virtual reality app, or capturing 4K footage on a smartphone or drone without any issues. Highlights of SanDisk Extreme 400GB microSDXC UHS-I card Read Speed: up to 160 MB/s Write Speed: up to 90 MB/s A2 spec allows the new card to manage random read input-output access per second (IOPS) of 4000 and write IOPS of 2000 Speed Class 3 (U3) and Video Speed Class 30 (V30) ratings 400GB microSDXC card lets you store up to 10 hours of Full HD video  RescuePRO Deluxe data recovery software download makes it easy to recover files that have been accidently deleted Waterproof, temperature-proof, shockproof, and X-ray proof No details about the pricing or availability of the card yet.
Fone Arena
Cash For Apps: Make money with android app

Tracking Atmospheric “Rivers” Could Help Us Predict Extreme Weather

Improving Predictions

Atmospheric rivers are long, narrow pieces of the atmosphere that appear like ribbons of water vapor traveling from tropical regions. When they arrive over land, they usually result in rain or snow, making them an essential water source for otherwise deficient areas like Southern California and other drought-ridden regions.

While these rivers are vital to survival and water collection, they can also cause mass flooding in these west coast communities. Given that they can bring about natural disasters, being able to predict when the rivers will make landfall would be of great help. Presently, we’re only able to predict them about two weeks in advance.

Atmospheric rivers. Image Credit: Wikimedia Commons
Atmospheric rivers. Image Credit: Wikimedia Commons

Hoping to improve those predictions, which would give communities more time to prepare, a team of atmospheric scientists at Colorado State University (CSU) developed a model that can predict atmospheric river activity up to five weeks in advance. The study, published in the Nature Partner Journal Climate and Atmospheric Science, is part of an initiative funded by NOAA Research’s MAPP Program and used the team’s careful analysis of 37 years’ worth of weather data.

Whatever the Weather

Cory Baggett, a co-author of the paper and postdoctoral researcher, said the model is “impressive,” considering that even NOAA’s state-of-the-art forecasting system and other models elsewhere in the world can only make such predictions, at most, a week or two ahead of time. Many lives could be saved if local emergency crews and reservoir managers had more of a lead time to prepare for extreme weather events, like droughts or heavy rainfall, that atmospheric rivers can bring about.

While preparing for potential natural disasters is an important benefit of the model, the team also noted that it could improve even routine weather reporting — meaning it could help communities feel better prepared whatever the weather may be.

The post Tracking Atmospheric “Rivers” Could Help Us Predict Extreme Weather appeared first on Futurism.


In Extreme Heat, Trees Stop Sucking Carbon From the Air

Carbon Capture

Researchers in Australia have made a strange new observation about how trees respond to extreme temperatures. After observing trees in the country for a full year, scientists from the University of Western Sydney’s Hawkesbury Institute for the Environment found that, in extreme heat, leaves “sweat” to survive.

Until now, it was believed that photosynthesis and transpiration (the process of water release) couldn’t occur without each other. The new study, published in the journal Global Change Biology, showed that during extreme heatwaves trees temporarily stop capturing carbon — even as they continue to release water through their leaves. The “sweating” action helps to keep trees cool, but the observations regarding carbon capture have raised concerns about what will happen as global warming progresses.

Trees were found to "sweat" in response to extreme heat. Image Credit: PublicDomainPictures / Pixabay
Trees were found to “sweat” in response to extreme heat. Image Credit: PublicDomainPictures / Pixabay

If current predictions hold true, these extreme heat events will only become more frequent and more severe. Prof Mark Tjoelker, an author on the study from the University of Western Sydney’s Hawkesbury Institute for the Environment, told the Guardian that “If heatwaves occur over a large surface area. . .clearly, the trees and native forests in that area would take up less carbon. And if there is an increased frequency of heatwaves that obviously impacts their ability to serve as carbon sinks.”

The question is, do these findings mean it’s conceivable that trees might stop capturing carbon altogether?

Climate-Affected Trees

For the study, researchers planted a dozen “whole-tree capsules” with seedlings at two locations: the Hawkesbury forest and a site in Yarramundi, near Sydney. The pods were climate and temperature-controlled which gave the researchers the ability to control all the variables.

For half the capsules, the researchers simulated an environment for them to grow in where the average temperature had risen 3 degrees centigrade. This would model what far-future temperatures could be like if climate change is not curbed. Looking at all the trees in the study, they simulated several “heat waves” to see how they would cope. The trees grown in warmer temps didn’t necessarily fare any better than the ones that hadn’t. “It didn’t matter whether the trees were grown under current climate conditions or the 3C increase of the future,” Tjoelker told the Guardian,” they responded equally well.”

Trees are known to respond to stress in a number of ways, and it seems that “sweating” may be just one example. Often times, that stress comes from human activity: nearby traffic to accidental injuries from lawn mowers, this stress can change a tree’s appearance and slow its growth.

Further studies will need to be conducted using other tree species to see if this coping mechanism holds true for more than just the species in Australia. If so, it could spell trouble for humans. Trees are an important part of our ability to survive on planet Earth. Aside from carbon emissions, when we exhale carbon dioxide, trees capture it and convert it into oxygen.

Without major steps to slow climate change, extreme heatwaves and heat events will only become more frequent and intense. If trees begin to capture less carbon or stop capturing carbon altogether, the impact it could have on the human species, as well as the other organisms on Earth which depend on oxygen, could be profound.

For now, more studies are needed to help researchers better understand the process of “tree sweating” and whether or not it’s possible that trees could one day stop capturing carbon. If that’s the case, though, perhaps the research will also reveal it’s possible (and necessary) to genetically engineer trees to ensure their — and our — continued survival.

The post In Extreme Heat, Trees Stop Sucking Carbon From the Air appeared first on Futurism.


Review: Outcry Extreme Bluetooth Speaker from Wicked Audio

I was expecting a more outrageous design for a speaker named Outcry Extreme ($ 54.99) from a brand named Wicked Audio, but that’s what you get for making snap judgments. In reality, the Outcry Extreme looks like a high-end speaker from Sonos, but it’s a fraction of the price. There is one styling cue that is subtle, but it’s there. The Wicked Audio logo is embossed in the metal grill, if you’re looking for it. 

 Outcry Extreme

The Outcry Extreme has some nice heft and is indeed heavy duty. It operates using the included auxiliary cable, but also Bluetooth, which is key as most iPhones don’t come with a headphone jack. Speaking of wireless, it also has an eight-hour battery. It doubles as a speakerphone, with an integrated microphone and controls for volume, play/pause and track control.

Outcry Extreme

My only concerns are that it’s only sold in black, and these days Alexa integration is becoming a standard in most speakers, but not the Outcry Extreme.


  • Heavy duty look and feel
  • 8 hours of battery life
  • Subtle design


  • Only sold in black
  • No Alexa integration

Final Verdict

If you are looking for a solid speaker don’t let the Wicked Audio Outcry Extreme name scare you off. 


Master your iPhone in one minute a day: Sign up here to get our FREE Tip of the Day delivered right to your inbox.
iPhone Life articles by all authors about iPhone and iPad

Record Global Temperatures Drive Extreme Heatwaves in Oceans, Too

Marine Heatwaves

In 2016, the seas of northern Australia and Alaska’s Bering Gulf experienced their worst marine heatwaves in 35 years of satellite records.

The consequences were dire for local marine ecosystems. An unprecedented number of corals across the Great Barrier Reef bleached and died. Alaska experienced one of its worst harmful algal blooms — an excess growth of algae in the water that generates harmful toxins that choke marine life.

Are these marine heatwaves connected to rising global temperatures? Answering this question may help scientists assess the likelihood of similar events happening again in the future.

Climate Change and Extreme Events

Despite our wealth of scientific knowledge about extreme events that happen on land, the oceans — which trap approximately 93 percent of the heat responsible for climate change —remain vastly unexplored. Now, things are starting to change as a wave of fresh research sheds light on the role of human emissions on environmental changes like the two marine heatwaves in 2016.

In a study published in the Bulletin of the American Meteorological Society, a team of researchers estimated that the two extreme events in Alaska and Australia’s oceans were made up to 50 times more likely by humanity’s carbon footprint.

Research into how much human-made climate change contributes to events like drought and hurricanes has blossomed over the past few years. Scientists are now able to examine an individual event and identify with increasing precision whether climate change or not played a role, and if so, how much.

Jeff Rosenfeld, editor in chief of the Bulletin of the American Meteorological Society, said in a statement: “For years scientists have known humans are changing the risk of some extremes. But finding multiple extreme events that weren’t even possible without human influence makes clear that we’re experiencing new weather, because we’ve made a new climate.”

Events like the 2016 marine heatwaves are far from isolated. As reported by National Geographic, the extraordinary ocean heatwave that hit Tasmania between 2015 and 2016 was also likely due to the influence of climate change. In a study published in Nature Communications, a research team estimated that human-made climate change made the exceptionally long duration of the ocean heatwave — nearly a year — 330 times more likely.

What Next?

By now, the amount of carbon emissions from human action has already bound us to certain inevitable changes. The leaked draft of an upcoming special report by the Intergovernmental Panel on Climate Change (IPCC) suggests that the most ambitious climate goal set in Paris — keeping global warming within 1.5 degrees Celsius (2.7 degrees Fahrenheit) — will be exceeded well before 2050. This would condemn the planet to more extreme events on land and in the oceans.

Researchers are looking for ways to protect corals and other key marine species, and stave off the worst impacts of climate change on marine communities. But oceans remain some the most threatened ecosystems on the planet. Only an international commitment to preserve the most remote marine regions — which could be in the works by 2020 — would be an effective response to environmental threats and climate change impacts.

The post Record Global Temperatures Drive Extreme Heatwaves in Oceans, Too appeared first on Futurism.


Extreme OLED test finds Apple’s iPhone X takes much longer to ‘burn in’ images than Samsung Galaxy Note 8

Article Image

OLED technology is prone to image burn-in — something that Apple worked hard to compensate for in designing the hardware and software of the iPhone X. A new and extreme stress test puts the iPhone X anti-burn-in capabilities to the test, discovering Apple’s efforts have, in fact, put it ahead of the competition under the most difficult conditions.
AppleInsider – Frontpage News